全国统一热线:

400-123-4657

万博体育图
万博新闻动态

NEWS

产品中心PRDUCTS

技术支持RECRUITMENT

    技术支持分售前技术支持和售后技术支持,售前技术支持是指在销售遇到无法解答的产品问题时,售前技术支持给予帮助;售后技术支持是指产品公司为其产品用户提供的售后服务的一种形式,帮助用户诊断并解决其在使用产品...
点击查看更多
万博新闻动态

当前位置: 首页 > 万博新闻动态

电磁仿真软件的内功心法

2024-05-14 09:58:35

  ManBetX万博体在射频、微波设计中,各种“强大”的商用电磁仿真软件的功能包罗万象,这篇“内功心法”从算法角度出发,提示大家如何谨慎选择仿真软件。

  世上本无“路”,“场”近似得多了就变成了“路”!理论上,所有电工问题都可以由场论解决,但忽略了“场”在“路”尺寸上传播造成的相位差后,于是“路”把电磁参数固化到器件特性中成为集总参数,就可使用比麦大神(麦氏方程)简单无数倍的方法对电特性进行求解。当然,这一切的近似,归功于模型尺寸远小于电磁波的波长。

  在无法满足电小尺寸时,难以使用集总参数解决问题,就必须使用场论!然而,用麦大神的方法怎样都不如基大神(基尔霍夫)的解法来得舒服,各路小神们看不下眼,基于麦大神的理论,用数值算法代替数学解析式,从而用电脑把人脑解放出来,解决民间疾苦。于是,就有了我们现在熟得不能再熟的矩量法(MoM)、时域有限差分(FDTD)法、有限元法(FEM)、传输线矩阵法(TLM)和部分元等效电路(PEEC)等全波算法。现有的全波仿真商业软件没有跑出这些算法的圈子,因此了解了这些算法的特性,也就知道如何选用恰当的商业仿真软件:

  MoM将导体分成电小尺寸单元,通过计算所有导体单元上的电流(常数),得到所有导体电流单元总体产生的电磁场;

  FDTD将仿真对象对应的空间区域分割成电小尺寸的体积元,假设各体积元内的场为常数。通常使用脉冲作为激励函数,模型可得到宽带响应;

  FEM将空气和其他所有材质分割成电小尺寸单元,假设每个单元内部的场为常数,使用变分技术求解麦克斯韦方程组;

  TLM将建模对象区域划分成多个电小尺寸单元,每个单元对应一个三维传输线节点,每个节点上的传输/反射可以由节点阻抗得出;

  PEEC将所有变化单元间场的关系替换为电路的关系,单元之间通过局部的互电感和互电容相连,总体电路进行仿真,然后将求解的电流和电压参数转化为场。

  现在强大的全波软件仿真工具层出不穷,但如果使用不当,实际效果与仿真预测可能会相差十万八千里哦!

  1、电尺寸的定义是物体的几何尺寸除以波长,单位为波长。如一辆5米的小轿车,对于GSM的1.8GHz频率,其对应的波长是0.1667米,所以这辆车的电尺寸是50个波长。

  2、电尺寸小于5个波长称为电小;大于5小于50称为电中;大于50小于500称为电大;大于500则称为超电大。

  3、计算电磁学主要研究的是电磁数值仿真算法。它分两大类:全波算法(精确算法)和高频算法(渐近算法)。

  全波算法:直接求解麦克斯韦积分或微分方程。又分时域全波和频域全波算法。场区和源区均需要划分网格。

  4、所有电磁仿真算法的仿真速度和精度均与被仿真物体的电尺寸直接相关。离开电尺寸来谈论某个电磁算法或者更狭隘地讲某个软件的仿真速度和精度均是无意义的。

  5、在给定计算机硬件资源条件下,全波算法有其能够仿真的最大电尺寸限制;而高频算法则有其最小电尺寸限制。

  6、常用的全波算法有FDM(有限差分法)、FIT(有限积分法)、TLM(传输线矩阵法)、FEM(有限元法)、MoM(矩量法)、BEM(边界元法)。假设网格数为N,CPU和内存需求满足如下关系:FDM、FIT和TLM正比于N^1,FEM正比于N^2,MoM和BEM则为N^3。

  7、一般地,FDM、FIT、TLM使用六面体体分割网格;FEM使用四面体体分割网格;MoM、BEM则使用三角面元面分割网格。常用的基于FDM、FIT、TLM的均是时域算法;基于FEM、MoM、BEM的则均是频域算法。

  8、在相同仿真精度和给定计算机硬件资源(如单台64GB工作站)下,对于电小问题优选MoM和BEM,对于电中则选FEM,对于电大选择FDM、FIT、TLM最可取,而对于超电大,则只能选取高频算法。这一结论是上述各点的综合体现。做电磁仿真的工程师必须清楚地知道这一点:没有万能的算法,只有适合于你特定问题的最佳的算法。

  9、多层快速多极子法(MLFMM)是基于MoM的全波算法,比起MoM的N3计算量,MLFMM具有极高的仿真效率,满足NlogN。但由于其核心是将整个场分为近场区和远场区,所以该方法不适用于源点间存在较强耦合的情形,如腔体或凹结构,此时将不得不退化为正比于N3的MoM。

  10、高阶矩量法(HO-MoM)特别适用于大面积连续结构的精确仿真,如反射面天线;而对于像包含众多孤立细小结构,如芯片金丝键合线这类结构,高阶矩量法的效率将大大降低。

  11、最大复杂度的纯电磁仿真情形是:瞬态脉冲激励下,包含满足空间分布函数的旋电/旋磁各向异性及铁电/铁磁非线性材料,电磁场能量在整个超电大结构中大于100dB动态范围的仿真。它必须对时域微分形式的麦克斯韦方程组进行直接求解。频域算法无法解决非线性问题,积分方程算法(MoM和BEM均是IE方法)不能解决空间连续分布的媒介,加之又是非线性材料。此时只有时域算法可以使用。

  11、在工程中,绝大部分仿真的复杂度均远低于上述情形。点频、窄带、CW、线性/互易/均匀媒介、电小/电中等等。

  12、通常时域算法的仿真终止条件是仿真区域内的电磁能量充分衰减,所以使用时域算法时要始终关注仿真区域中的电磁能量将如何衰减?如何创造衰减的条件?

全国统一热线

400-123-4657
+地址:北京市石景山区实兴东街11号4层4351室
+传真:+86-123-4567
+邮箱:admin@yquananshidai.com
微信平台

微信平台

手机官网

手机官网